A New Global Asymptotic Stability Result of Delayed Neural Networks via Nonsmooth Analysis

نویسندگان

  • Yaning Gu
  • Deyou Liu
  • Wenjuan Wu
  • Jingwen Zhang
چکیده

In the paper, we obtain new sufficient conditions ensuring existence, uniqueness, and asymptotic stability of the equilibrium point for delayed neural network via nonsmooth analysis, which makes use of the Lipschitz property of the functions. Based on this tool of nonsmooth analysis, we first obtain a couple of general results concerning the existence and uniqueness of the equilibrium point. Then we drive some new sufficient conditions ensuring global asymptotic stability of the equilibrium point. Finally, there are the illustrative examples feasibility and effectiveness of our results. Throughout our paper, the activation function is a more general function which has a wide application.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An LMI approach to global asymptotic stability of the delayed Cohen-Grossberg neural network via nonsmooth analysis

In this paper, a linear matrix inequality (LMI) to global asymptotic stability of the delayed Cohen-Grossberg neural network is investigated by means of nonsmooth analysis. Several new sufficient conditions are presented to ascertain the uniqueness of the equilibrium point and the global asymptotic stability of the neural network. It is noted that the results herein require neither the smoothne...

متن کامل

Global Asymptotic and Exponential Stability of Tri-Cell Networks with Different Time Delays

In this paper‎, ‎a bidirectional ring network with three cells and different time delays is presented‎. ‎To propose this model which is a good extension of three-unit neural networks‎, ‎coupled cell network theory and neural network theory are applied‎. ‎In this model‎, ‎every cell has self-connections without delay but different time delays are assumed in other connections‎. ‎A suitable Lyapun...

متن کامل

Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays

In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...

متن کامل

Title Improved global robust asymptotic stability criteria for delayed cellular neural networks

This paper considers the problem of global robust stability analysis of delayed cellular neural networks (DCNNs) with norm-bounded parameter uncertainties. In terms of a linear matrix inequality, a new sufficient condition ensuring a nominal DCNN to have a unique equilibrium point which is globally asymptotically stable is proposed. This condition is shown to be a generalization and improvement...

متن کامل

New Global Asymptotic Stability Condition for Delayed Neural Networks with a Constant Delay

This paper investigates the global asymptotical stability problems for delayed neural networks. By introducing some triple integral terms in the constructing of the Lyapunov-Krasovskii functional, combined with the inequality analysis, a new asymptotical stability condition in terms of linear matrix inequalities are proposed, Finally, numerical example is given to demonstrate the effectiveness ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJCNS

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2010